Random perturbation of the projected variable metric method for nonsmooth nonconvex optimization problems with linear constraints

نویسندگان

  • Abdelkrim El Mouatasim
  • Rachid Ellaia
  • José Eduardo Souza de Cursi
چکیده

We present a random perturbation of the projected variable metric method for solving linearly constrained nonsmooth (i.e., nondifferentiable) nonconvex optimization problems, and we establish the convergence to a global minimum for a locally Lipschitz continuous objective function which may be nondifferentiable on a countable set of points. Numerical results show the effectiveness of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Perturbation of the Variable Metric Method for Unconstrained Nonsmooth Nonconvex Optimization

We consider the global optimization of a nonsmooth (nondifferentiable) nonconvex real function. We introduce a variable metric descent method adapted to nonsmooth situations, which is modified by the incorporation of suitable random perturbations. Convergence to a global minimum is established and a simple method for the generation of suitable perturbations is introduced. An algorithm is propos...

متن کامل

Limited memory interior point bundle method for large inequality constrained nonsmooth minimization

Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables with various constraints. In this paper, we describe a new efficient adaptive limited memory interior point bundle method for large, possible nonconvex, nonsmooth inequality constrained optimization. The method is a hybrid of the nonsmooth variable met...

متن کامل

پخش بار اقتصادی دینامیکی بهینه با استفاده از P-PSO پیشنهادی

In solving the electrical power systems economic dispatch (ED) problems, the goal is to schedule the committed generating units outputs so as to meet the required load demand at the minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a different approach to economic dispatch problems with particle swarm optimization (PSO) techniq...

متن کامل

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, φ(x0, . . . , xp, y), subject to coupled linear equality constraints. Our ADMM updates each of the primal variables x0, . . . , xp, y, followed by updating the dual variable. We separate the variable y from xi’s as it has a spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computer Science

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011